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The Lattice and Thermal Radiation Conductivity of Thermal
Barrier Coatings: Models and Experiments

Dongming Zhu and Charles M. Spuckler
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Abstract

The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a
laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal
conductivity to the lattice and radiation conductivity. The radiation conductivity component can be
expressed as a function of temperature, coating material scattering, and absorption properties. High
temperature scattering and absorption of the coating systems can be also derived based on the testing
results using the modeling approach. A comparison has been made for the gray and nongray coating
models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good
agreement with experimental observations.
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Revolutionary Ceramic Coatings Greatly
Impact Gas Turbine Engine Technology

— Ceramic thermal and environmental barrier coating system development
goals
- Meet engine temperature and performance requirements
- Ensure long-term durability
- Improve technology readiness
- Develop design tools and lifing methodologies

— Crucial for envisioned supersonic vehicles: reduced engine emission,
improved efficiency and long-term supersonic cruise durability
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Revolutionary Ceramic Coatings Impact Gas

Turbine Engine Technology
(Continued)
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Objectives

• Evaluate thermal conductivity and thermal radiation resistance of
ceramic coatings at high temperatures (2700 to 3200 °F), under
realistically thermal gradient conditions

• Facilitate the development advanced thermal and environmental
barrier coatings

• Improve understanding of the coating thermal radiation performance

Laser heat flux	 Laser heat flux Laser heat flux
High emissivity layer

1	 1	 1	 1	 1	 1

Radiation emitter

1	 1	 1

Ceramic coating	 Ceramic coating Ceramic coating

(a) Internal radiation	 (b) Combined internal & (c) External radiation
external radiation
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NASA Steady-State Laser Heat-Flux Approach for
Ceramic Coating Thermal Conductivity Measurements

— A uniform laser (wavelength 10.6 µm) power distribution achieved using integrating
lens combined with lens/specimen rotation

— The ceramic surface and substrate temperatures measured by 8 µm and two-color
pyrometers and/or by an embedded miniature thermocouple

— Thermal conductivity measured at 5 sec intervals in real time
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Ceramic Coating Thermal Conductivity Measurement
Approach by the Laser High-Heat-Flux Testing
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Thermal Conductivity of Fully Dense Oxides
— The radiation conductivity component evaluated
— Significant conductivity increase due to increased radiation at high

temperatures especially under thermal gradients
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Thermal Conductivity of Fully Dense Oxides
(Continued)
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Evaluation of Lattice and Radiation Thermal
Conductivity of TEBC Systems at High Temperatures

— ZrO2-8wt%Y2O3/BSAS/mullite+20wt%BSAS/Si coating on SiC/SiC CIVIC substrate

— Conductivity determined by a steady-state laser heat-flux technique

— Coating surface radiation can contribute 5 to 15% total heat transfer at 1650 °C
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Radiative Diffusion Models

- The diffusion conduction equations
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Radiative Diffusion Models for Nongray Materials	 ^'r

- The diffusion conduction models established for nongray coating materials

- The diffusion conduction equations
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Evaluation of Lattice and Radiation Thermal	 0
Conductivity of 3000 °F Coating Systems

- Freestanding coatings and gray layer radiative diffusion assumption models
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Scattering Component of Plasma-Sprayed
Coating Systems
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Radiation Conductivity Component of
Ceramic Materials
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Evaluation of Radiation Flux Resistance of
Oxide Coating Systems

— Preliminary results showed doped HfO2 coatings had better radiation
resistance

	

1600	 150

	

1400 	 15 mil	 T
radiation source Coating thickness, microns

	

1200 	
doped	 T

roack 	 "e	
1 0 0
	 200 	 400	 600 	 800	 1000	 1200

U	 HfO2 	 100 B
1000

G
800

a
9 600
H	

q
rad 50	 0.5

	

400 	 ^—
rad-thru

200 or

	

0	 0 \^
0.0 0.5	 1.0	 1.5	 2.0 2.5 3.0 3.5 4.0	 0+'

Time, hours

T radiation source

0.1
0.00	 0.02	 0.04	 0.06	 0.08	 0.10	 0.12

T back	 Coating thickness, cm

q radthru=hc(Tback-Tair)

www.nasa.gov 14

NASA/TM—2010-215670 	 8



National Aeronautics and Space Administration

Concluding Remarks

• Laser heat-flux approach established for radiation thermal
conductivity measurements and advanced coating development

• Lattice and radiation conductivity determined for dense materials
and coatings

• The diffusion conduction models established for gray and nongray
coating materials

• Scattering and absorption determined for coatings under realistic
thermal gradients at high temperatures

• Advanced coatings promising in reducing radiation conductivity
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